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Introduction* * 

This paper is a study of valuations of a commutative ring, and the associated 
valuation rings as defined by Manis [ 161. In the classical theory, the valuation u is 
defined on a field Q, and the valuation ring Q,, is an integral domain with linearly 
ordered lattice of ideals. Any ring R with the latter property is called a chaa’n ring, 
and any chain ring R is a valuation ring for (a valuation of) its ring of quotients 

Qc W. 
In the modern theory, dating from Manis’ paper, the valuation ring QL, is not in 

general a chain ring, and hence the ideal and ring structure, and homc~logical prop- 
erties of Q not only become of interest, but are important tools for understanding 
and classifying valuation rings. 

In particular, we show that Manis valuation rings have surprisin,g connections 
with, and applications to, FPF Ring Theory which arose from non commutative 

ring theory as simultaneous generalizations of Nakayama’s quasi-Frobenius (QF) 
rings, Azumaya’s pseudo-Frobenius (PF) rings, and, in commutat!ve ring theory, 
of Priifer rings and self-injective rings. (See [4,24a] and [32] for the non- 
commutative, and [5], [6], and [24b] for the commutative FPF rings.) 

* A portion of the research on this article was carried out white the author held a Rutgers Uni\.ersiQ 
Faculty Academic Study Program at New Mexico State University (Las Cruces). The ;luthor is grateful 

to both institutions for making this work possible, especially Professor C.L. %‘alkl:r, Chairman of the 

Department of Mathematics at NMSU who relieved me of all teaching duties so 1 might spend full time 

on it. 

** Because of editorial considerations, this introduction was written to replace the table of contents 

that originally served as introduction. This necessitated certain repetitions since concepts in the test, 

defined a6 ovo, could not be deleted. Since the author was unawsre that the table c f contents was re- 

moved until he received galley proofs, it was not possible to rewrite the text to avoid this regrettable 

redundancy. However, the reader can avoid it by skipping the introduction! (Thcsre is consolatior in 

that .) 
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In the classical theory of valuation rings, Krull showed in [ 14 that every integrally 
closed domain R is the intersection of valuation rings of its quotient field K of a 
very special kind. We call a subring V of any commutative ring Q a conch subring 
provided that there exists a unit x of Q not in R with inverse x-’ in R, and such 
that R is maximal with respect to the property of excluding x and including x-l. 
(The name is after the beautiful seashell that also excludes/includes.) In this case 
we say that A cone&s x in Q. Now Krull proved that every integrally closed domain 
R is the intersection of the conch subrings of K= Q,(R) that contuin JL and, 
moreover, that every conch subring V of u field K is Q chain ring, hence valuation 
ring, and that either x or x -I lies in Vfor uny nonzero x of K. (Lot. cit., p. 110, 
esp. Kriterium 1 u. 2, and Fundamentalsatz der Hauptordnungen, p. 111.) The latter 
also holds good for any unit x and Manis valuation ring V of any ring Q. 

A pair of a ring Q is an ordered pair (A, P) consisting of a subring A, and a prime 
ideal P of A. A max pair is a pair maximal in the ordered set of all pairs of Q. (See 
Section 3.) By Kriteriwm 2 of [ 141, if (A, P) is a max pair for a field K, then A is 
a valuation ring, and P is the unique maximal ideal of A. Manis’ theorem is an 
exact generalization, although A is no longer necessarily a chain ring, or even a local 
ring, and P is not longer a maximal ideal. (See Section 3.) 

As in the classical theory, if A conches x in a ring A, then (A, ix) is a max 
pair of Q. Furthermore, as noted in Section 6, a max pair (A, P) comes from a conch 
subring A iff P= in for some unit x of A. Thus, not every valuation subring 
is conch. Moreover, applying the Principal Ideal Theorem for Noetherian Rings, 
when A is Noetherian, one sees that A must have dimension 1 if conch. Further- 
more, any Noetherian chain ring A is a PIR hence must be conch in Q,(A). 

Briefly, a ring is (right) FPF if all finitely generated faithful right modules 
generate the category of all (right) modules. In [5,6] the author characterized com- 
mutative RPF rings by the two properties: (FPF 1) W has self-inj*;ctive quotient ring 
Q,(F); (FPF 2) every finitelv generated faithful ideal of R is a generator; N 

equivalently projective. (See Section 8.) 
In Section 12 we prove that any local FPF ring R is a valuation ring for its 

quotient ring. Since Q,(R) is self-injective for any commutative FPF ring H, then 
a result proved in Appendix B provides a converse: A local valuation ring R for self- 
injective quotient ring is an EPF ring. 

Also in Appendix B we note that local valuation rings of chain rings are chain 
rings. While chain domains are FPF, chain rings in general are not. The property 
that chain rings enjoy is that every finitely presented faithful module is a generator. 
Rings with the latter property are called FP’F rings; and chain rings are 
characterized among local rings by the property that every factor ring is FP2F [5]. 
Moreover, almost maximal valuation rings are characterized in [S] among local rings 
& the property that every factor ring is FPF. 

A1mc.a maximal valuation rings are fundamental in the classification of FGC 
rings, or rings over which every finitely generated module ecomposes into a direct 
sum of cyclic modules, and connections with Vamos’ fractionally self-injective 
(PSI) rings, FGC, and FPF rings are pointed out in Section 14. 
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It is appropriate at this point to cite the characterization of Cunningham [31] of 
almost maximal valuation rings among chain rings. The quotient sheaf Q(A t) of a 
sheaf A of rings extending a ring J’ is constructible analogously to the way Utumi 
constructed the maximal quotient ring of a rrng, and Cunningham showed that a 
chain ring V is an almost maximal valuation ring iff Q(A v) = A V. (Note, the 
underlying topological space is defined by the set of divisorial ideals rat her than the 

set of prime ideals.) 
Using conch rings, and FPF rings, we sharpen theorems of Griffin [ 11,121 on 

integrally closed subrings of regular rings, and of rings with few zero divisors, by 
showing these are first of all the intersections of conch subrings, and in the case Q 
is self-injective, intersections of FPF conch subrings. (See Section 8, and Appendix 

B-) 
The theorem of Eggert [3], also taken up in Section 8, characterizes when every 

overring of R in Q,,,(R) is integrally closed in Q,,,(R) as Prtifer ring ,in the sense 
of Griffin [ 111, defined by G4 in Section 7, who characterized them by the same 
property on overrings of R in the classical quotient ring Q,(R). When Q#) is von 
Neumann regular, then Griffin [12] characterized a Priifer ring as being 
semihereditary (see Proposition G5 in Section 7), a theorem which applies to 
Eggert’s theorem when R is semiprime, and in this case Q,(R) = Q,,,(R) (see 
Eggert’s theorem, Section 8). We show in Section 8 for these rings that R is Prufer 
iff FPF. More generally, if Q,(R) is injective, t&i R is Prufer iff FPF (Section 8, 
Proposition). 

In Sections 11 and 12 we study the uniqueness of the associated valuation ring 
W of a valuation ring A = Q. of a ring Q. If H is the ideal at 00, then H is a prime 
ideal of Q contained in A, and W is the valuation ring of the valuation uK of the 
quotient field K= Qc(Q’), where Q”= Q/H, extending the valuation u’ of Q’ induc- 
ed by o. (It can be shown that K is also the quotient field of A’= A/H, but this is 
left for a sequel.) 

If A is a maximal subring of Q, say Q = A[x], then A conches x in Q, and IV is 
a rank 1 valuation ring for K. If, in addition, W is a discrete valuation ring, then 
W is an n-radical extension of the local ring A;< of A’ at P’ in the sense that w” E A; 

for all w E W. Moreover, if M is the radical of W, then MN =x’-’ W, SO kf = 

@%f. (Thus, by the Conch Ring Theorem, W conches x’ in K.) 
This structure theorem allows us to apply the ubiquitous theorem of Kaplansky 

(13a] on the structure of radical extensions of fields to deduce that A has at most 
one associated discrete xzluation ring, namely A;#, when A is a conch maximal 
subring of Q with residue ring A/P of characteristic 0. (In effect, Kaplansky’s 
theorem implies that r: = 1 in this case.) 

Jn [16] Manis extended classical valuation theory for integral domains to arbitrary 
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commutative rings with unit: a valuation u of a ring Q is a mapping 

where r is a totally ordered abelian group (and 00 is the symbol with the usual 
properties of a!) such that 

u(ab) = u(a) + v(b), 

v(a + b) 2 min{ u(a), v(b)} 

holds for all a, b E Q. The valuation ring of u is the subring 

Qu={aEQINdW 
and 

is the valuation prime ideal of o. If f #O, then v is said to be proper (otherwise 
trivial) and genuine if PO # QU and -PU #O. 

2. Chain rings 

A ring A is called a chain ring provided that the lattice of ideals ii linearly 
ordered. If A is an integral domain and a chain ring, then A is called a chain 
domain. A necessary and sutiicient condition for a domain A to be a chain domain 
is that A be the valuation ring OI a valuation u of its quotient field Q,(A). Every 
chain ring is a valuation ring but not conversely. 

3. Max pairs 

A pair for a ring Q is an ordered pair (B, L) where B is a subring of Q and L is 
a prime ideal of B. The set pairs Q of all pairs of Q is ordered by the relation 
(B, L) Z, (C, M) iff B 2 C and L n C = AL The set of all pairs of Q is an inductive st, 
and so is the set PairsQ(B, L) of all pairs (A, P) containing a given pair (B, L). By 
Zorn’s lemma Pairsg(B, L) contains at least one maximal pair (A, P), and we call 
any such a maxpair of Q. It IS obvious that (A, P) is a max pair iff (A, P) is maximal 
in PairsQ(A, P). A theorem of Manis [16] characterizes the valuation subrings of a 
ring Q by the max pairs of Q. 

Manis’ Theorem. If u is a valuation of Q, then (Q,, PJ is a max pair of Q; con- 
versely, if (A, P) is a max pair, then there exists a valuation v of Q for which 
A=Q, and P=P,. 

From classical valuation theory we know that if Q is a field, then (A, P) is a max 
pair iff A is a chain ring and P= Max A is the unique maximal ideal ([ 141, [ 151, [22]). 
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Moreover, in this case necessarily Q,(A) = Q since 4-l EA whenever 4 E Q\A. 
A prime ideal i.:: of Q defines a max pair (Q, &I) of Q, so in general one cannot 

say much more ring theoretical about a valuation subring A of Q than about Q 
itself. A typical theorem is that A is semihereditary if Q is von Neumann regular 
(Griffin [ 1 I]). 

4. The core of a valuation 

The core of a valuation u of Q 

H=&={aEQlo(a)==} 

is a prime ideal of Q, and is the maximal ideal of Q contained in Q,. Let Q’ denote 
the residue ring Q/H, and let K= QJQ’) be its quotient field. The valualtion v in- 
duces a valuation UK : K --TU { 00) sending a’(,‘)-* onto v(a) - v(b) for all aE Q 
and all b E Q\ H. This valuation OK is called the associated valuation, and K the 
associated field of v. The associated valuation ring 

ky& = {~EKIvK(~)>O} 

is thus a valuation domain, hence a chain ring, that contracts to (2;: 

K,$Q’=Q;; 

and its maximal ideal PuA. contracts to PI: 

p,,nQ’=P;. 

Thus, while neither Qv nor Qi are chain rings in general, QI( is the contraction (to 
Q’) of a chain ring KoK of the associated field. 

5. The quotient ring of a valuation ring 

Let Q* denote the set regular elements of a ring Q, and 

denote its full OF classical quotient ring. While any valuation v of Q hacc a unique 
extension to Q&l), in general the valuation theory can be carried out without 
assuming that Q = QJQ), and we propose to do so. For example, if R is a subring 
of Q, and (R,L) is a pair, then possibly the max pair (A, P) > (R, L) may ha?bE: 
Q,(A) = Q even if Q,(R) # Q. Even if QJA) # Q, we are able to show: 

heorem. ( 1) The associated field of a vaiuation ring A of Q is the qrrofier1t field 

of A’: Q&U = QSQ’,. 
(2) A is an essential A-submodule of Q, hence Q,(A) C Q,(Q)* 
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(3) If Q is generated by A and units (e.g. if Q is a local ring), then Q&I) = 

Qc(Qh 

Corollary. If Q is von Neumann regular ring, then Q = QJA). 

Moreover, one can characterize ring-theoretically the valuation s &rings of von 
Neumann regular rings. 

Thesrem. If Q is a van Neumann regular ring, then a subring A is a valuation sub- 
ring of Q iff A contains a maximal ideal H of Q such that A’ = A/H is a chain 
doma.l”n with QJA’) = Q’= Q/H. When this is so, then QJA) = Q, and H is the core 
of the valuation. 

6. Conch rings 

Let A be a maximal order of a ring Q. Then there is an element YE A with 
x=y-’ $ A, and A is a subring that is maximal with respect to containing X-’ and 
excluding X. We next consider a wider class of valuation rings, called conch rings, 
having this property. 

A conch subring of Q is a subring V maximal with respect to excluding a given 
unit x of Q and including x -I. Then V will be said to conch x in Q, and will be 
called an x-conch subring of Q. 

Conch subrings were first introduced by Krull in his monograph “Idealtheorie” 
[14], where he showed that any integrally closed subring R of a field K is the hn- 
tersection of the conch subrings of K containing R, and that every conch subring 
of K is a chain ring. We generalize this as follows: 

Theorem. Let Q be a commutative ring. 
(1) Every conch subring A of Q is integrally closed. 
(2) (A, max A) is a max pair of Q. 

Corollary. Every conch subring of Q is a valuation ring. 

The converse does not hold however: 

Co&h ng Theorem. If (A, P) is a max pair of Q, then A is a conch subring iff 
1” = 4s for some XE U(Q), where U(Q) is the units group. 

Thus, not every valuation subring A of Q is a conch subring. Nevertheless, when 
there are enough units, the t’ -+. classes of rings have the same intersection; to wit, 
Krull’s theorem for fields alrc cited. We extend this to any integrally closed sub- 
ring R of a von Neumann regt:. ring: R =ConchQ(R). (Compare the theorem of 
Griffin [l 11 discussed presently.) 



Valuation theory 13 

Theorem. If R is a subring of Q., then tr 4e intersection Conchq(R) of the clench 
subrings of Q containing R is integrally closed. Moreover, every element oJ 

Conch;(R) = ConchQ(R)n U(Q) 

is integral over R. 

We call ConchQ(R) the *-integral closure of R. 
We say that the Conch Intersection Theorem holds for Q, if every integrally 

closed subring R = Conchg(R). 

7. Griffin’s theorems 

A ring R has few zero divisors (in Griffin’s sense) if it has just finitely many 
maximal prime ideals of 0. (Equivalently Q = Q,(R) is semilocal, i.e. Q/(rad Q) is 
semisimple.) The principal property of these rings used in Griffin’s theorems is this: 
if zfzQ,(R) and if aER *, there exists u E R so that z + au E Q*. (“Choose u in all 
max O-prime ideals not containing z and in no O-prime ideal containing z.“‘) 

Theorem (Griffin [l 11). If Q is von Neumann regular, or has few zero divisors, and 
if R is integrally closed in Q = Q,(R), then R is the intersection of valuation sub- 
rings of Q. 

To introduce further theorems we need additional concepts, especially those of 
the large quotient ring RIsl of R with respect to a multiplicatively closed subset 
(=ms.) S of R. Let S*=R*f’W 

(Ql) Rs denotes the ring of quotients w.r.t. S. 
(42) Rts, = R(F)-’ = {rs-‘EQJR)IrER,sES*}. 

(Q3) &,={ XEQJR) (resp. XEQ,(R)IX~ES so that XSER). 
R(s) is called the quotieni ring sf R w.r.t. S. RIsl is called the large quotient ring 
of R in QJR) (resp. in Q,(R)) w.r.t. S. 

If M is a prime ideal, and S= R\M, then we set RfpI = RtsJ and RiA+Il = Rls]. 

Gl. Propositisn (Griffin [ 111). If R is integrally closed in Q,.(R), then so is RIsI for 
any multipiicative closed set S. 

G2. Proposition (Griffin [ 111). If R is a ring with few zero divisors, then RIpI = R,,, 
for every prime ideal P. 

An ideal I of R is regular if In R* #0. 
The regular total order property at a prime ideal P is the property that if I and 

K are ideals -,f R one of which is regular, then either IRpa KRp or KRp 2 IRp. 
Then RP is said to have the regular total order property. Trivially, if RP is a chain 
ring, this holds. 



14 C. Faith 

The core of a prime ideal P of R is defined as 

If P= P, for a valuation o of Q, the core of P is simply the core of U. 

G3. Proposition (Griffin Ill]). Let M be a maximal ideal of R. Then the following 
are equivalent. 

(Ml) RIMI is a valuation ring for Q,(R). 
(M2) If a, b e R, and be coreR P, then 3s E R, t f R\ P so that SQ = tb. 
(M3) If I, K are ideals of R not both contcpined in the core of P, then IRp 1 KRp 

or KRp > IRp. 
(M4) Rp hJs the regular total order property. 

C4. Propositicrn (Griffin [l l]). The following are equivalent for a ring R: 

(W R,, is a valuation ring for QJR) for every maximal ideal M of R. 

w9 R, has regular total order property for every maximal ideul M. 

W3) Every overring of R in QJR) is flat over R. 

W) Every overring is integrally closed in QJR). 

(W Every finitely generated regular ideal is invertible in Q,(R). 

U-5) Every regular ideal generated by two elements is invertible in Q,(R). 

A ring R is Prufer if it satisfies any one (hence all) of the properties (Pl)-(P6). 

G§. Proposition (Griffin [ 11,121). The following are equivalent conditions on a 
ring R: 

(1) R is semihereditary. 
(2) R is Prufer and Q,(R) is regular. 
(3) Q,(R) is zero-dimensional and RiMI is a chain domain for every maximal 

ideul M. 

66. Corollary (Griffin). Every integrally closed subring R of a von Neumann 
regular quotient ring Q = 9,(R) is an intersection of semihereditary valuation 
subrings. 

8, FPF cings 

We next relate conch subrings to FPF rings. A ring A is FPF iff every finitely 
generated faithful module M generates mod-A, equivalently M” =A @X in mod-A 
for some n 2 1. The chief examples of FPF rings are Priifer domains, hence Dede- 
kind rings, self-injective rings, and their arbitrary direct products [5,6]. F’urther- 
more FPF rings are characterized in [6] by the tw:, properties: 

(FPF 1) Q,(A) is injective. 
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(FPF 2) Every finitely generated faithful (=dense) ideal of A generates mo;i. A; 
equivalently is projective. 

The condition (FPF 2) is also called pre-FPF. 

Semiprime FPF Theorem [S]. A semiprime ring A is FPF iff A is a semihereditary 
(FPF 1) ring. 

Any FPF ring A is integrally closed in its quotient ring Q,(A) ([6], p. 78, Pro- 
position 2.7); hence the intersection R = UIEI A~ of an arbitrary family {A;}i,, / of 
FPF subrings of a ring Q with each QJAi) = Q is integrally closed in Q. 

We say that the FPF Intersection Theorem holds for a (necessarily self-injective) 
ring Q when every integrally closed subring R of Q is such an interseckm. 
Moreover, if the {Ai}ie 1 can be chosen to be FPF conch subrings, we say the FPF 
Conch Intersection Theorem holds for Q. 

Theorem. A valuation ring A of a seu--injective von Neumann regular ring Q is 
FPF, and, moreowr, the FPF Conch Intersection Theorem holds for Q. 

If Q,(A) = Q, then by Griffin’s theorem, A is semihereditary hence pre-FPF. 
Since Q is self-injective, A is then FPF iff QJA) = Q, a result which follows from 
our results on quotient rings of valuation rings described earlier. If R is any subring 
of a regular of Q containing all idempotents of Q, and if S is any subring > R, then 
S contains a unit of Q not in R: if SE S\ R, and e=e2 E Q generates sQ, then 
x=s+ (1 - e) is the desired unit. Thus, in view of our result that Conchg(R) is the 
*-integral closure of R in Q, we conclude that R = ConchQ(R) when R is integrally 
closed. 

Corollwy. If R is nonsingular and integrally closed in Q = Q,,(R), then R is the 
intersection of the FPF conch subrings of Q containing R. 

This follows since Q is a self-injective regular ring. 
Note that this shows that in the theorem Q need not be Q,(R) as in Griffin’s 

theorem, and furthermore, Q need not be Q,,(R). 
Another aspect of the FPF Theorem is that any overring of an FPF ring A is also 

FPF, hence integrally closed in QJA). This fact recalls the study of Eggern [3] of 
a ring R with the property, called l-ring, that every overring S of R in Q = CL,,,_,(R) 
is integrally closed. 

Theorem (Eggert [3]). An I-ring R is a Prtifer ring. Moreover, if R is semiplrime, 

Q = Q,,(R) = Q,(R). 

Thus, a semiprime i-ring has injective Q,(R). This is the point of departl;re for 
the next theorem. 
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Proposition\. The following are equivalent conditions on a ring R with injective 

Q,(R). 
(II) R is pre-FPF. 
(2) R is Prufer. 
(3) Every overring of R in Q,(R) is integralIy closed. 
(4) Every overring of R in Q,(R) is flat over R. 
(5) R is an I-ring. 

When this is so, then R is FPF. 

The proof makes use of the next result. 

Lemma. If Q= Q,(R) is injective, then a finitely generated ideal I of R is faithfui 
iff I is regur’ar. 

Qbviously, if I is regular, it is faithful, and conversely, if Q is injective, then I 
faithful implies by a theorem of Nakayama and Tkeda (in [4], Chapter 23) that 
IQ = Q. Write 

1 = i Xiqi 
i;_ 1 

in Q, where Xi E I, qi =ric-‘EQ,C,riER, i= l,..., n. Then c = Cr;, xiri E I, so 1 con- 
tains a regular element. 

This shows the equivalence (I) e (2) and the other equivalences are derived from 
Griffin’s theorems. _ 

Corollury , The foilowing are equivalent conditions on a ring P I. 

(1) A iI; FPF. 
(2) A is an I-ring with injective Q,(A). 

Corollary. A maximal order A of a self-injective ring Q is an 

We pr eviously remarked that a maximal order A of a ring Q 
hence integrally closed in Q, so A is FPF by the corollary. 

CorolPary. A semiprime ring R is FPF iff R is an I-ring. 

For using Eggert’s result, R has injective Q,(R). 

9. Continuous rings 

FPF conch ring. 

is a conch subring, 

A ring R is said to be right continuous ([2O], 1211) if the following two conditions 
are satisfied: 
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(Cl) If I is a right ideal of R, then there is a maximal essentia! extension of I in 
R generated by an idempotent. 

(C2) If f =f 2 E R, and if I= fR, then I is generated by an idempotent. 
Right continuous rings get their name by upper continuity property of the lattice 

of principal right ideals [21] (expounded in [ lOa], p. 160 ff.). A ring R is continuous 
if it is right and left continuous. An integral domain R not a field is an example of 
a ring satisfying (Cl) but not (C2). 

We now cite some theorems on continuous rings of Utumi (but see /lOa], Chapter 
13), and deduce some corollaries for integrally closed rings. 

Utumi Theorems ([20,21)). 1. A right self-injective ring R is right continuous. 
2. If R is right continuous, then R/J is right continuous, and von Neumann 

regular, and J, the right singular ideal, coincides with the Jacobson radical. 
3. A regular ring R is right continuous iff R contains all idempotents of its maxi- 

maC right quotient ring Q,,,(R). 

Corollary. If Q is a self-injective regular ring generated by its idempotents, then Q 
has no integrab’y closed regular subrings +Q. 

Corollary. If R is a commutative regular ring integrally closed in (2 = Q,,.&R), 
then R is a continuous ring. 

Let R denote a commutative regular ring. Then R is self-injective iff R is com- 
plete (= the lattice of principal ideals is complete). Thus, Q = Q,,,(R) is complete. 

If R is a Boolean ring, then R is a regular ring #Q = Q,,(R) whenever R is r.at 
complete. Then R cannot be integrally closed in Q since every element of Q is an 
idempotent. Similarly, R cannot be continuous. 

A theorem of Goodearl 
their idempotents. 

[lob] characterizes regular rings which are generated by 

Theorem. A regular ring R is generated by its idempotents ijf no division ring 
except possibly Z/pZ is a homomorphic image of R. 

Corollary. rf a commutative regular ring R is generated by idempotents, then the 
only residue fields of R are finite prime fields. 

10. Conch rings as maximal subrings 

If A conches x in Q, then A is a maximal subring of Q iff Q = A[x]. If Q is a field, 
this happens if and only if A is a rank 11 valuation ring. In this section we discuss 
this situation. 

If A conches x in Q, then A conches x in QZ = A [xl, and hence A is also a valua- 
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tion ring of Q2. Moreover, as stated, A is a maximal subring of Q2. Since Q2 is 
generated by A and units, then Q&I) = Qc(Q2) by Section 5. 

The largest ideal & =&(A) of Qz in A is A, = r),,,x-“A. (Clearly A, s Hz, 
and if q~H2, then qx%A Vn, so qEA,.) We set Qi=Q2/&, A;=A/H, etc. 

Theorem. If A conches x in Qz = A[xl, then any subring of W of Kz = QC(Q2) that 
conches x’ in Kz and that contains A; is a rank-l valuation domain (equivalently 

n x’-“W=O) and WnQi=A;. 

First W (I Qi conches x’ in Q;. Since A; also conches x’ in Q;, then Wn Q; = A;. 
Next, by Gull’s Theorem, W is a chain domain, that is, a classical valuation 
domain of a field. Since 

we have 

n x’-“A;=O~~x’-“~=10 

Since W conches x’, 

M=max W=iFi? 

and if Pz is any prime ideal #M, then 

tilpz = W[X] = Kl 

proving that P2 =O. Thus, W is rank-l 
Henceforth, to simplify notation, we shall assume that A is a maximal subring 

of Q=A[x]. Then, &= H, Q; :g Q’, Ai = A’, etc. The rest of the section is devoted 
to the question: when is W of the theorem, which we call the associated rank 
l-valuation domain of A, a discrete valuation ring? We prove that if it is, then W 
is a ‘radical’ extension of the local ring A>$, where a ring R is a radical extension 
of a subring S in case for each XE R there corresponds an integer n > 0 such that 
x” ES. If there is an integer n > 0 so that x” E S for all XE R, then we say that R is 
an n-radical (or n-ical) extension of S. (Compare [7].) 

Theorem. Let A be an x-conch maximal subring of Q, and suppose there exists an 
associated discrete valuation ring W of A. Theh W is an n-radical extension of the 
local ring Abf of A’ at P’, where P= (5, and 

M=max W=im, and M”=x’-‘W. 

11. aplansky’s theorem on radical extensions revisited again’ 

Using a theorem of Kaplansky (131 on radical extensions of fields, we conclude 

’ It was revisited in [7]. 
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that if W/M# Q&V/P’), then W/M has characteristic p >O and either 
(KAP I) W/M is purely inseparable over Q&V/P’), or else 
(KAP 2) NM4 is an algebraic extension of a finite field. 

Consequently, we have the: 

Corollary. If A is a conch maximal subring of Q such that A/P has quotient fieid 
of characteristic 0, then there is at most one associated discrete valuation rhg of 

A, namely 
W=A;. 

the local ring of A’ at P’. 

This follows from the theorem since necessarily W/M= Q&V/P’), so if 
S= A’jP’, then W/M=(A’/P’)S-’ and so 

W=A’S-‘=A;,. 

Corollary. If A is an x-conch maximal subring of Q, then there is at nmt one 
associated discrete valuation ring W having max W = x’- ’ W, namely, A;>#. 

For, by the theorem, W is n-radical over A;! and n = 1. 

12. Local FPF rings are valuation rings 

Recall that a waist of a ring R is an ideal W such that every ideai of R &her 
contains or is contained in W. 

Local FPF Ring Theorem ([S]). A ring R is a local FPF ring Iff R has injective 
Q = Q,(R) and the set of zero divisors of R is a waist W such that R/W is a chain 
ring. 

A ring R is a sandwich ring if R contains the radical J=J(Q) of Q= Q,(R). 

Sandwich Ring Theorem ([S], (61). (1) Any local FPF ring R is a sandwich ring. 
(2) If R is a sandwich ring, then R is FPF if and oniy if Q = Q,(R) is iqjecrive and 

R/J is FPF. 

Note. The proof of the theorem involves showing that Q,.(a) = Q, where &= Q,‘J* 
and R = R/J. Since Q is injective by Utumi’ s theorem (Section 9) when Q is, then 
R will be FPF iff (FPF 2) holds for R. 

We next remark how the sufficiency of the Local FPF Ring Theorem follows 
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from (2) of the Sandwich Ring Theorem: if I is any finitely generated faithful ideal 
of R, then (via injectivity of Q), I contains a regular element, so ID IV. Then using 
the chain ring property of R/W, one sees that I= yR + W for some YE R, hence 
I=yR== R,, so (FPF 2) holds in R. 

We rn;y now deduce: 

Theorem. Any local FPF ring R is a valuation ring for QJR). 

The proof is ahnost immediate from the Local FPF Ring Theorem: by injectivity 
of Q, J consists of zero divisors. Since R is a sandwich ring, W= J. It follows that 
(R, J) is a max pair of Q (inasmuch as (R, 3) is one for Q), so R is a valuation ring. 

13. Local valuation rings are sandwich rings 

A local valuation ring 
A sandwich subring A 

Local Valuation 
subring. 

Ring Theorem. AIly local valuation ring A of Q is a sandwich 

A is a valuation ring that is a iocal ring. 
of Q is a subring containing the radical J= rad Q of Q. 

Any valuation ring A has the property 
the next lemma suffices for the proof. 

Sandwich Subring Lemma. Let A be a i~cai 
unit q of Q. Then A is a sandwich subring. 

that qeA or q%zA for anyqe u(Q), so 

subring con tainirig q or q- ’ for e-jery 

LetjEJ\Aandletj&besuchthat(l+j)-’=(l+jo). Sinceq=l+jEU(Q)\A, 
q -’ = l+joeA. Sinceq=(l+j&‘$A, j&maxA, hencejikA. Thudcontains 
a unit, a contradiction. This proves that JG A. 

Corollary. If A is a local valuation ring for Q, and if ah of the prime ideals of Q 
containing J are maximal, then Q’ = Q/H is afield, and A’ is a chain domain for Q’. 

The corollary follows from the theorem in as much as JC A and this implies that 
N, the largest ideal of Q contained in A, contains Jp so N is a maximal ideal. Now 
if A is any valuation ring for Q, then A’ is one for Q’. However, by the first theorem 
of Section 5, QJA’) = Q’, and every valuation ring of a field is a chain domain by 
the classical theorem (Section 2). 

artial Converse of ng Theorem. If A is a valuation sandwich 
subring for Q, and if Q’= Q/H is a field, then A is a local ring. 

For, since A’= A/His a valuation ring for Q’, A’ is a chain domain by the classical 
theorem stated in Section 2. 
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Let M:, M be the ideal of A such that 

M’ = M/H = max A’, 

Then, if aeA\M, then a&I, so b=a-’ EQ. Since A’ is a chain, domain, 
&= (a’)-’ E A’, hence b EA, proving that A is a Iocal ring with max A = M. 

Corollary. If A is a valuation sandwich subring for a local ring Q, then A is a local 
rirlg, 

For then Q/J is a field, so J= H and Q’ = A/J. We can sharpen the above results 
for a conch subring. 

Local Conch Ring Theorem. Let A conch x in Q. Then A is a locd ring with 
max A = f?% iff Q is a local ring and A is a sandwich subring. 

First assume that A is local, that P=max A = ix-‘A and let q E Q\A. Then we 
can write 

for aiEA, i=O ,..., n, and nsl. Then 

x=ao+qo 
where 

qO=a,q+-•+a,q” =qb and b=al+-•+a,,q”-*, 
so 

1 =x-‘ao+x-‘q. and c=x-‘go= 1 -x-‘aoEA. 

Since x-‘aoeP=f~, c@P=maxA, hence c%A. Since qo=xc, qo=qb is a 
unit of Q and 40’ =xelcW1, so q is a unit of Q. 

We next show that any a E A \ H, where H = H(A), is a unit of Q. Since Q = at 6 A 
for some ?E Q, q whence a is a unit, as required. This proves that H is a maximal 
ideal of Q consisting of the non-units of Q, so Q is local. Since H = rad Q, A is a 
sandwich subring. 

Conversely, if Q is a local ring and 9 c A, then A’ is a chain ring for 
Q,(A’) =Q’. Suppose Ma J is the ideal of A such that M’= max 14’= dm. 
Clearly, M= ia since x-IA 2 J. If a~ A\M, then a-l E Q, so a E A’! Now if 
a@ U(A), then we can write as before 

for q=a-*, and then 

so adW= ix-. This contradiction proves that A is local with man, A =)k’A. 



22 C. Faith 

The local part of the converse follows from the last corollary also since any conch 
subring is a valuation subring (Section 6). 

14. Almost maximal valuation rings 

In Section 1 we remarked: 

Theorem. Every chain ring A is a valuation ring for Q = Q,(A). 

Although this follows from the regular total order property and Griffin’s 
Theorem in Section 7 we can prove this directly: A and P = max A define a max pair 
in Q, since if (B,L)>(A,P) and if b=ac-’ EB\L, where aE:A, CEA*, then a$P, 
so a_kA, whence b-‘=a-&A. Then CEP, unless SEA. But then 
c-* = ba-’ e B, hence 1 =c-ICE BPc L, a contradiction. Thus, B\L CA, and so 
BcA, that is, B=A, whence (B,L)=(A,P) is a max pair. 

We say that a chain ring R is a maximal valuation ring if every system X’s Xi 

(mod Ii) of congruences is solvable for x in R provided that it is finitely solvable 
for x in the sense that every finite subset of congruences is solvable. 

A chain ring R is an almost maximal valuation ring (AMVR) provided that R/Z 
is a maximal valuation ring’ (MVR) for every ideal 1#0. 

AMVR’s were first introduced by I. Kaplansky [13b] who prove that they had the 
property (FGC) that finitely generated modules are direct sums of cyclic modules. 
Much later D.T. Gill (253 generalized this: 

Theorem (Kaplansky, Gill et al.). A local ring R is an AMVR iff R is an FGC ring. 

Another characterization: 

Matlis’ Theorem ([27]). A chain domain R is an AA4VR iff Q,(R)/R is injective. 

And yet another: 

Gill’s Theorem ([25]). A Iocal ring R is an AM VR iff the injective hull E(R/max R) 
is a uniserial (or chain) module. 

The Kaplansky-Gill et al. and Gill Theorems are contained in [4], p. 134, 
Theorem 20.49. 

W. Brandal, T. Shores, R.&S. Wiegand and P. Vamos completed the structure 
theory for FGC rings, and this is fully described in Brandal’s Lecture Notes [23]. 

2 The term is justified in [28]: a MVD is a valuation ring for a maximally complete field: If u is a 
valuation of a field K, then the valuation ring PU is maximal iff every extension of u to an overfield 
enlarges either the value group or the residue field (1281, [29]; also compare [30], [31]). 
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However, Vamos’ characterization [29] is particularly suited for our purposes, so 
we shall describe it. 

A ring R is fractional self-injective (FSI) iff every factor ring R/I has injective 
quotient ring Q,(R/I). In [S] I conjectured that a ring R is FSI iff every factor ring 
R/I is FPF. These latter are called CFPF rings, and I proved the conjecture in [6]. 

Vamos’ Theorem ([26]). A ring R is FCC iff R is F’S1 and Bezozt ( =finite/y 
generated ideals are principal ). 

Theorem ([6]). R is FCC iff R is CFPF. 

Corollary ([6]). A local ring R is CFPF iff R is an AMVR. 

15. SpPit null extensions as valuation rings 

In [24a, b] we studied when the split null extension R = (B, E) of a bimdure E 

over ring B is (F)PF, or a chain ring, or when R had relatedproperties (e.g. self- 
injective). For example, Proposition SA of [24a] states that R is a right chain ring 
iff B is a right chain ring and E is a uniserial right B-module such that bE= E for 
every 0 #b E B. If B is commutative and E is faithful, then B must be a domain for 
this. If, further, E is torsionfree, then E must be injective (Corollaries 5% and SC),. 

Theorem 6 of [24a] characterizes when R = (B, E) is a PF chain ring for cont- 
mutative B. This happens iff B is an AMVR domain such that B= Ends E and E 
is the injective hull of B/max B. (See [24a] for other characterizations.) Hencefor!h, 
assume that E is faithful over B. 

For commutative B, in [24b] we proved that R = (B, E) is FPF iff ~5 is injective 
over B, Ends E is the quotient ring BS-’ of B with respect to the multipkative set 
S consisting of all b E B with zero annihilators in E, and every finitely ger:.erated 
ideal which is faithful on E is invertible in BS-‘. It is much easier to characterize 
when R = (B, E) is a valuation ring for Q,(R) = (BS’, ES-‘): 

Theorem. Split-null extension R = (B, E) is a vatlration ring for Q,(T) = (BS - ‘, ES ’ ) 

iff E = Es for every s E S, and B is a valuation ring for BS I, assrtmit~g that E is 
faithful. 

Corollary. If E is torsion free over B, this happens iff E is divisible and B is a valtta- 
tion ring for Q = Q,(B). 

orollary. If E is a torsionfree module over a domain B, then R = (B, E) is a valrta- 
tion ring for Q,(R) iff E is injective and B is Q chain domain. 
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Appendix A 

We give a sketch of the proof of the Conch Ring Theorem. For a domain A, we 
already have indicated that any conch subring A of a field K is a chain domain. The 
statement that A conches x in K is simply that A[x] is the unique minimal subring 
of K (properly) containing A. In view of the 1- 1 correspondence A& AM between 
prime ideals M of A and over-rings of A, it follows that P = rad A contains a largest 
ideal Pz #I? Then, using the fact that A conches X, we can easily show that 
is a prime ideal, whence P= ix?% (since X-* @ P2). 

Conversely, if a chain domain A has radical P=]m, then one can show that 
Pz = n,, , PA is a prime ideal, and the largest prime ideal contained in P, hence 
A[x] = A, is the intersection of all subrings of K properly containing A. Thus, A 
conches x. 

The proof for the general case of a valuation ring A hinges on the fact that a pair 
(A, P) is a max pair of Q iff (A’, P’) is a max pair of Q’. Furthermore, then A con- f 
ches x in Q iff A’ conches x’ in Q’. Then, P= \lx-‘A iff P’= /m, etc. 

Appendix B 

The Conch Intersection Theorem for rings with few zero divisors 

The proof of the second theorem in Section 8 also suffices to prove: 

Theorem. If R has few zero divisors, then the Conch Intersection Theorem holds 
for Q = QJR). 

This follows since if S is a subring of Q properly containing R, then for every 
z ES\ R there corresponds u E R so that w = z + u E Q*. Thus, w is a unit of Q lying 
in S but not in R, SC the theorem follows. 

The theorem is a sharpening of Griffin’s theorem in Section 7 since a conch sub- 
ring is a valuation ring for Q, and it also provides an alternative proof. 

Converse to the Local FPF Theorem 

We note a donverse to the local FPF Theorem of Section 12. 

Theorem. If A is a local valuation ring for Q,(A), and if Q,(A) is self-inject& 
then ,4 is FPF3 

By using the equivalence Pi ++ P4 in G.4 of Section 7, we see that A is an king 
inasmuch as A =A [MI is integrally closed, where M is the unique maximal ideal, SO 
A is FPF by the second corollary in Section 8. 

Local valuation rings of chain rings are chain rings 
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Eve:y known valuation ring of a chain ring is a chain ring. The nexlt theorem 
charac terizes this property. 

Theorem. For a valuation ring A of a chain ring Q the following are equivalent: 
(1) A is CI local ring. 
(2) A is a sandwich subring of Q. 
(3) A is a chain ring. 

Proof. (1) * (2) by the Local Valuation Ring Theorem in Section 13, and (2) * (1) 
by the Partial Converse in the same section.. Moreover, (3)* (1) is trivial. Next 
assume (l), equivalently (2). If a3 b E A, then aQ c bQ or bQ C_ aQ., Suppose that 
aQc bQ, and write a =bq for some qEQ. If q$A, then qeJ, hence q-%(2, so 
q%A. Then b=aq -l, hence bA c aA. On the other hand, if q E A,, then aA c bA, 
hence A is chained. 

Problems 

(1) Does the FPF Conch Intersection Theorem hold for an arbitrary self-injective 
ring Q? If J is the Jacobson radical of Q, then Q= Q/J is a self-injective von 
Neumann regular ring, so the FPF Conch Intersection Theorem does hold for Q. 
It easily follows that R + J is the intersection of FPF conch subrings of Q if a is 
integrally closed in Q. If, for example, J is nil, then integral closure of R implies 
that R 2 J so l? is integrally closed in Q, and hence R is an FPF conch intersection 
in this case. Does this hold in general? 

(2) Is a conch subring on valuation ring A of fs ring Q necessarily an order in 
Q,(Q)? The answer is “yes” if Q is generated over A by units, hence if Q is a local 
ring, or when Q is regular. 

(3) If A and B both conch x in Q, how are they related? For example, suppose 
Q is a field, and A and B are maximal x-conch subrings. If A is an equi- 
characteristic complete discrete valuation ring, then we know that A = A//P(t), the 
power series ring over A/P. If B is also a complete DVR, then A = B iff A/P= 
B/P. A dubious conjecture: A = B in general. 

(4) Which continuous regular rings are integrally closed in their maximal quotient 
rings? 

(5) What are the relative weak global dimensions of conch subrings of rings? 
(6) We propose to study conch subrings of non-commutative rings. All of the 

foregoing theorems on conch rings, except for the case Q is a field, were obtained 
ring-theoretically, that is, without employing valuation theory. It seems likely that 
such is the case here, and that ring theory can make a contribution to the structure 
of intractable rings, e.g. the enveloping algebra of a Lie algebra is an Ore domain, 
but little else is known about its structure. J. Towber has suggested (orallly) that 
conch rings may be useful here. 
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(a) A special case occurs when A conches an element x in Q, where x belongs to 
the center C of Q. If Q is a skew-field, then A n C is a chain ring; if Q is a regular 
ring, then A fI C is a semihereditary ring. Whea Q is regular and self-injeqtive, then 
AnC is FPF. 

These may be useful for the structure of A. 
When Q is a skew-field, I conjecture that A is a chain ring. 
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