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Introduction**

This paper is a study of valuations of a commutative ring, and the associated
valuation rings as defined by Manis [i6]. In the classical theory, the vaiuation v is
defined on a field Q, and the valuation ring Q, is an integral domain with linearly
ordered lattice of ideals. Any ring R with the latter property is called a chain ring,
and any chain ring R is a valuation ring for (a valuation of) its ring of quotients
Q.(R).

In the modern theory, dating from Manis’ paper, the valuation ring Q, is not in
general a chain ring, and hence the ideal and ring siructure, and homclogical prop-
erties of Q not only become of interest, but are important tools for understanding
and classifying valuation rings.

In particular, we show that Manis valuation rings have surprising connections
with, and applications to, FPF Ring Theory which arose from non-commutative
ring :heory as simultaneous generalizations of Nakayama’s quasi-Frobenius (QF)
rings, Azumaya’s pseudo-Frobenius (PF) rings, and, in commutative ring theory,
of Priifer rings and self-injective rings. (See [4,24a] and [32] for the non-
commutative, and [5], [6], and [24b] for the commutative FPF rings.)

* A portion of the research on this article was carried cut while the aurhor held a Rutgers University
Faculty Academic Study Program at New Mexico State University (Las Cruces). The auther is gratetul
to both institutions for making this work possible, especially Professor C.L. Walker, Chairman of the
Department of Mathematics at NMSU who relieved me of all teaching duties so I might spend full time
on it.

** Because of editorial considerations, this introduction was wriiten to replace the table of contents
that originally served as introduction. This necessitated certain repetitions since concepts in the text,
defined ab ove, could not be deleted. Since the author was unaware that the table ¢f contents was re-
moved until he received galley proofs, it was not possible to rewrite the text to avoid this regrettable
redundancy. However, the reader can avoid it by skipping the introduction! (There is consolatior in
that.)
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In the classical theory of valuation rings, Krull showed in [14] that every integrally
closed domain R is the intersection of valuation rings of its quotient field K of a
very special kind. We call a subring ¥ of any commutative ring Q a conch subring
provided that there exists a unit x of Q not in R with inverse x~Vin R, and such
that R is maximal with respect to the property of excluding x and including x~'.
(The name is after the beautiful seashell that also excludes/includes.) In this case
we say that A conches x in Q. Now Krull proved that every integrally closed domain
R is the intersection of the conch subrings of K=Q.R) that contain R, and,
moreover, that every conch subring V of a field K is a chain ring, hence valuation
ring, and that either x or x~! lies in V for any nonzero x of K. (Loc. cit., p. 110,
esp. Kriterium 1 u. 2, and Fundamentalsatz der Hauptordnungen, p. 111.) The latter
also holds good for any unit x and Manis valuation ring V of any ring Q.

A pair of aring Q is an ordered pair (A4, P) consisting of a subring A, and a prime
ideal P of A. A max pair is a pair maximal in the ordered set of all pairs of Q. (See
Section 3.) By Kriterium 2 of [14], if (4, P) is a max pair for a field K, then A4 is
a valuation ring, and P is the unique maximal ideal of A. Manis’ theorem is an
exact generalization, although A is no longer necessarily a chain ring, or even a local

As in the classical theory, if A conches x in a ring A, then (4, Yx~'A4) is a max
pair of Q. Furthermore, as noted in Section 6, a max pair (4, P) comes from a conch
subring A iff P=]/x‘IA for some unit x of A. Thus, not every valuation subring
is conch. Moreover, applying the Principal Ideal Theorem for Noetherian Rings,
when A is Noetherian, one sees that A must have dimension 1 if conch. Further-
more, any Noetherian chain ring A is a PIR hence must be conch in Q.(A).

Briefly, a ring is (right) FPF if all finitely generated faithful right modules
generate the category of all (right) modules. In [5, 6] the author characterized com-
mutative RPF rings by the two properties: (FPF 1) R has self-injective quotient ring
O.(F); (FPF2) every finitelv generated faithful ideal of R is a generator;
equivalently projective. (See Section 8.)

In Section 12 we prove that any local FPF ring R is a valuation ring for its
quotient ring. Since Q.(R) is self-injective for any commutative FPF ring R, then
aresult proved in Appendix B provides a converse: A local valuation ring R for self-
irjective quotiznt ring is an FPF ring.

Also in Appendix B we note that local valuation rings of chain rings are chain
rings. While chain domains are FPF, chain rings in general are not. The property
that chain rings enjoy is that every finitely presented faithful module is a generator.
Rings with the latter property are called FP?F rings; and chain rings are
characterized among local rings by the property that every factor ring is FP*F [5].
Moreover, almost maximal valuation rings are characterized in [5) among local rings
by the property that every factor ring is FPF.

Almcst maximal valuation rings are fundamental in the classification of FGC
rings, or rings over which every finitely generated module decomposes into a direct
sum of cyclic modules, and connections with Vamos’ fractionally self-injective
(FSI) rings, FGC, and FPF rings are pointed out in Section 14,



Valuation theory 9

It is appropriate at this point to cite the characterization of Cunningham [31] of
almost maximal valuation rings among chain rings. The quotient sheaf Q(A4,) of a
sheaf A4 of rings extending a ring V is constructible analogously to the way Utumi
constructed the maximal quotient ring of a rning, and Cunningham showed that a
chain ring V is an almost maximal valuation ring iff Q(Ay)=A,. (Note, the
underlying topological space is defined by the set of divisorial ideals rather than the
set of prime ideals.)

Using conch rings, and FPF rings, we sharpen theorems of Griffin [11,12] on
integrally closed subrings of regular rings, and of rings with few zero divisors, by
showing these are first of all the intersections of conch subrings, and in the case Q
is self-injective, intersections of FPF conch subrings. (See Section 8, and Appendix
B.)

The theorem of Eggert [3], also taken up in Section 8, characterizes when every
overring of R in Q..(R) is integrally closed in Q,,,,(R) as Priifer ring in the sense
of Griffin [11], defined by G4 in Section 7, who characterized them by the same
property on overrings of R in the classical quotient ring Q.(R). When Q_.(R) is von
Neumann regular, then Griffin [12] characterized a Priifer ring as being
semihereditary (see Proposition G5 in Section 7), a theorem which applies to
Eggert’s theorem when R is sewiiprime, and in this case Q.(R)=Q,.(R) (see
Eggert’s theorem, Section 8). We show in Section 8 for these rings that R is Priifer
iff FPF. More generally, if Q.(R) is injective, tneni R is Priifer iff FPF (Section 8,
Proposition).

In Sections 11 and 12 we study the uniqueness of the associated valuation ring
W of a valuation ring A =Q, of a ring Q. If H is the ideal at oo, then H is a prime
ideal of Q contained in A, and W is the valuation ring of the valuation v of the
quotient field K= G.(Q’), where Q' = Q/H, extending the valuation v’ of Q’ induc-
ed by v. (It can be shown that K is also the quotient field of A"=A/H, but this is
left for a sequel.)

If A is a maximal subring of Q, say Q= Alx], then A conches x in Q, and W is
a rank 1 valuation ring for K. If, in addition, W is a discrete valuation ring, then
W is an n-radical extension of the local ring A’p. of A’ at P’ in the sense that w" € Ap
Sor all we W. Moreover, if M is the radical of W, then Mi=x"""W, so M=
l/?'—'W. (Thus, by the Conch Ring Theorem, W conches x’ in K.)

This structure theorem allows us to apply the ubiquitous theorem of Kaplansky
[13a] on the structure of radical extensions of fields to deduce that A has at most
one associated discrete valuation ring, namely Ap, when A is a conch maximal
subring of Q with residue ring A/P of characteristic 0. (In effect, Kaplansky’s
theorem implies that »=1 in this case.)

1. Valuations

In [16) Manis extended classical valuation theory for integral domains to arbitrary
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commutative rings with unit: a valuation v of a ring Q is a mapping
v:Q—-Ir'VU{cm}

where I' is a totally ordered abelian group (and oo is the symbol with the usual
properties of oo!) such that

v(ab) = v(a) + v(b),
v(a + b)=min{v(a), v(b)}
holds for all a,be Q. The valuation ring of v is the subring

Q,={ae Q| v(@)=0}
and
P,,={aeQ|v(a}>O}

is the valuation prime ideal of v. If I'#0, then v is said to be proper (otherwise
trivial) and genuine if P,#Q, and P,#0.

2. Chain rings

A ring A is called a chain ring provided that the lattice of ideals is linearly
ordered. If A4 is an integral domain and a chain ring, then A is called a chain
domain. A necessary and sutiicient condition for a domain A to be a chain domain
is that A be the valuation ring o1 a valuation v of its quotient field Q.(A4). Every
chain ring is a valuation ring but not conversely.

3. Max pairs

A pair for a ring Q is an ordered pair (B, L) where B is a subring of Q and L is
a prime ideal of B. The set pairs Q of all pairs of Q is ordered by the relation
(B,L)2(C, M) iff B2 C and LNC=M. The set of all pairs of Q is an inductive st,
and so is the set Pairsy(B, L) of all pairs (A, P) containing a given pair (B,L). By
Zorn’s lemma Pairsg(B, L) contains at least one maximal pair (4, P), and we call
any such a max pair of Q. It is obvious that (A4, P) is a max pair iff (A4, P) is maximal
in Pairsg(4, P). A theorem of Manis [16] characterizes the valuation subrings of a
ring Q by the max pairs of Q.

Manis’ Theorem. If v is a valuation of Q, then (Q,, P,) is a max pair of Q; con-

versely, if (A,P) is a max pair, then there exists a valuation v of Q for which
A=Q,and P=P,.

From classical valuation theory we know that if Q is a field, then (A, P) is a max
pair iff A4 is a chain ring and P=Max A4 is the unique maximal ideal ([14], [15], [22]).
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Moreover, in this case necessarily Q.(4)=Q since ¢~' € A whenever ge O\ A.

A prime ideal ... of Q defines a max pair (Q, M) of Q, so in general one cannot
say much more ring theoretical about a valuation subring A of Q than about Q
itself. A typical theorem is that A is semihereditary if Q is von Neumann regular
(Griffin [11]).

4. The core of a valuation

The core of a valuation v of Q
H=H,={aeQ|v(a)= oo}

is a prime ideal of Q, and is the maximal ideal of Q contained in Q,. Let Q' denote
the residue ring Q/H, and let K=Q.(Q’) be its quotient field. The valuation v in-
duces a valuation vy : K—I"U{} sending a’(b’)”' onto v(a)—uv(b) for all aeQ
and all be Q\ H. This valuation vy is called the associated valuation, and K the
associated field of v. The associated valuation ring

K, =lkeK|vg(k)=0}

is thus a valuation domain, hence a chain ring, that contracts to Q,:

K,NQ'=0Qy;
and its maximal ideal P, contracts to P
P, NQ'=P,.

Thus, while neither Q, nor Q, are chain rings in general, Q, is the contraction (to
Q’) of a chain ring K,, of the associated field.

5. The quotient ring of a valuation ring

Let Q* denote the set regular elements of a ring Q, and

0.(0)=04(Q)={ab™"|ae Q,be Q*}

denote its full or classical quotient ring. While any valuation v of Q has a unique
extension to Q.(A), in general the valuation theory can be carried out without
assuming that Q= Q.(Q), and we propose to do so. For example, if R is a subring
of Q, and (R,L) is a pair, then possibly the max pair (4, P)2(R,L) may have
0.(A)=Q even if Q.(R)#Q. Even if Q.(A)#Q, we are able to show:

Theorem. (1) The associated field of a valuation ring A of Q is the quotient field

of A': Q.(A")=0.(Q).
(2) A is an essential A-submodule of Q, hence Q.(A) C Q.(Q).
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() If Q is generated by A and units (e.g. if Q is a locai ring), then Q.(A)=
Q.(Q).

e’

Corollary. If Q is von Neumann regular ring, then Q= Q.(A).
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6. Conch rings

Let A be a maximal order of a ring Q. Then there is an eiement yeA with
x=y '¢A,and Aisas ormg that is maximal with respeC[ to containing x~! and
" - )4

2ot Bme Al A ad amenals .
WIUCT Cladd Ul dludllull llllgb, Caica Condii

ich rings,

Conch subrings were f1rst mtroduced by Krull in his monograph *‘Idealtheorie’’
{14], where he showed that any integrally closed subring R of a field K is the in-
tersection of the conch subrings of K containing R, and that every conch subring
of K is a chain ring. We generalize this as follows:

The converse does not hold however:

Conch Ring Theorem. If (4, P) is a max pair of Q, then A is a conch subring iff
P =VYx7'A for some xe U(Q), where U(Q) is the units group.

Thus, not every valuation subring A of Q is a conch subring. Nevertheless, when
there are enough units, the t -~ classes of rings have the same intersection; to wit,
Krull’s theorem for fields aire - cited. We extend this to any integrally closed sub-

ring R of a von Neumann regi:. ring: R= = Conchgy(R). (Compare the theorem of
Oeiffin (111 Aicnricca A wmenonmelsr )
NJLIL113E R 1] WDLUDOLU PJICOCLILLY . )
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Theorem. If R is a subring of Q, then the intersection Conchy(R) of the conch
subrings of Q containing R is integrally closed. Moreover, every element of

Conch$(R) = Conchy (R)NU(Q)

is integral over R.

We call Conchg(R) the *-integral closure of R.
We say that the Conch Intersection Theorem holds for Q, if every integrally
closed subring R=Conchg(R).

7. Griffin’s theorems

A ring R has few zero divisors (in Griffin’s sense) if it has just finitely many
maximal prime ideals of 0. (Equivalently Q= Q.(R) is semilocal, i.e. Q/(rad Q) is
semisimple.) The principal property of these rings used in Griffin’s theorems is this:
if ze Q.(R) and if ae R*, there exists u € R so that z+auwe Q*. (‘“‘Choose u in all
max O-prime ideals not containing z and in no 0-prime ideal containing z.”’)

Theorem (Griffin [11]). If Q is von Neumann regular, or has few zero divisors, and
if R is integrally closed in Q= Q.(R), then R is the intersection of valuation sub-
rings of Q.

To introduce further theorems we need additional concepts, especially those of
the large quotient ring Ry of R with respect to a multiplicatively closed subset
(=ms.) S of R. Let S*=R*NS.

(Q1) R; denotes the ring of quotients w.r.t. S.

(Q2) Ris5)=R(S¥)'={rs'eQ.(R)|reR,seS*}.

(Q3) Ris;={xe Q.(R) (resp. xe Q,(R)| Tse S so that xse R}.

R, is called the quotien: ring of R w.r.t. S. R is called the large quotient ring
of R in Q.(R) (resp. in Qn(R)) w.r.t. S.
If M is a prime ideal, and S=R\M, then we set Rp)=R(s) and Ry = Rs).

G1. Proposition (Griffin [11]). If R is integrally closed in Q.(R), then so is Rs) for
any multiplicative closed set S.

G2. Proposition (Griffin [11]). If R is a ring with few zero divisors, then R;pj=Rp,
Jfor every prime ideal P.

An ideal 1 of R is regular if INR*+0.

The regula- total order property at a prime ideal P is the property that if / and
K are ideals »f R one of which is regular, then either JRp2 KRp or KRp2 IRp.
Then Rp is said to have the regular total order property. Trivially, if Rp is a chain
ring, this holds.
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The core of a prime ideal P of R is defined as
Coreg P={beR|Vre R* Jee R\ P> ber ' eR}.

If P=P, for a valuation v of Q, the core of P is simply the core of v.

G3. Proposition (Griffin [11]). Let M be a maximal ideal of R. Then the following
are equivalent.

(M1) Ry is a valuation ring for Q.(R).

(M2) If a,beR, and bécoregP, then As< R, te R\ P so that sa=1tb.

(M3) If LK are ideals of R not both contained in the core of P, then IRp2 KRp
or KRpD IRp.

(M4) Rp has the regular total order property.

G4. Propositien (Griffin [11]). The following are equivalent for a ring R:
(P1) Ry, is a valuation ring for Q.(R) for every maximal ideal M of R.
(P2) Ry, has regular total order property for every maximal ideal M.
(P3) Every overring of R in Q.(R) is flat over R.

(P4) Every overring is integrally closed in Q.(R).
(P5) Every finitely generated regular ideal is invertible in Q.(R).
(P6) Every regular ideal generated by two elements is invertible in Q.(R).

A ring R is Priifer if it satisfies any one (hence all) of the properties (P1)-(P6).

G5. Proposition (Griffin [11,12]). The following are equivalent conditions on a
ring R:

(1) R is semihereditary.

(2) R is Priifer and Q.(R) is regular.

(3) Q.(R) is zero-dimensional and Ry is a chain domain for every maximal
ideal M.

G6. Corollary (Griffin). Every integrally closed subring R of a von Neumann
regular quotient ring Q=Q.(R) is an intersection of semihereditary valuation
subrings.

8. FPF rings

We next relate conch subrings to FPF rings. A ring A4 is FPF iff every finitely
generated faithful module M generates mod-A4, equivalently M"= A®X in mod-A4
for some n=1. The chief examples of FPF rings are Priifer domains, hence Dede-
kind rings, self-injective rings, and their arbitrary direct products [5,6]. Further-
more FPF rings are characterized in [6] by the two properties:

(FPF 1) Q.(A) is injective.
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(FPF 2) Every finitely generated faithful (=dense) ideal of A generates moi A4;
equivalently is projective.

The condition (FPF 2} is also called pre-FPF.

Semiprime FPF Theorem {5]. A semiprime ring A is FPF iff A is a semihereditary

p 1\ siss
{F 1) ring.
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osition 2.7); hence the intersection R =| |eiA, of an arbitrary family {4,}, ; of

D : .

FPF subrings of a ring G with each Q.(A4;)=Q is integrally closed in Q.
We say that the FPF Intersection Theorem holds for a (necessarily self-injective)

ring Q when every integrally closed subring R of Q is such an intersection.

Moreover, if the {A,};; can be chosen to be FPF conch subrings, we say the FPF

Conch Intersection Theorem holds for Q.

Theorem. A valuation ring A of a self-injective von Neumann regular ring Q is

FPF, and, moreover, the FPF Conch Intersection Theorem holds Jor Q
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our results on quotient rings of valuation rings described earlier. If R is any subring
of a regular of Q containing all idempotents of Q, and if S is any subring DR, then

S contains a unit of Q not in R: if se S\ R, and e=e’€ Q generates sQ, then
Xx=5+(1-e) is the desired unit. Thus, in view of our result that Conchy(R) is the
*-integral closure of R in Q, we conclude that R =Conchgy(R) when R is integrally
closed.

Corollery. If R is nonsingular and integrally closed in Q= Q_,..(R), then R is the
intersection of the FPF conch subrings of Q containing R.
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Another aspect of the FPF Theorem is that any overring of an FPF ring A is also

FPF, hence integrally closed in Q.(A). This fact recalls the studv of Eggert [3] of
a ring R with the property, called I-ring, that every overring S of R in Q= Q. (R)
is integrally closed.

Theorem (Eggert [3]). An I-ring R is a Priifer ring. Moreover, if R is semiprime,
0= Onax(R) =0 (R).

et

Thus, a semiprime /-ring has injective Q.(R). This is the point of departure for
the next theorem.
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Proposition. The following are equivalent conditions on a ring R with injective
O:(R).

(1) R is pre-FPF.

(2) R is Priifer.

(3) Every overring of R in Q.(R) is integrally closed.

(4) Every overring of R in Q.(R) is flat over R.

(5) R is an I-ring.
When this is so, then R is FPF.

The proof makes use of the next result.

Lemma. If Q=Q.(R) is injective, then a finitely generated ideal I of R is faithful
iff Iis reguiar.

Obviously, if 7 is regular, it is faithful, and conversely, if Q is injective, then /
faithful implies by a theorem of Nakayama and Ikeda (in [4], Chapter 23) that
IQ0=0. Write

1= El Xiqi
in O, where x;€1, g;=ric’'eQ,c,rieR,i=1,...,n. Thenc=Y! x;r;el, so I con-
tains a regular element.

This shows the equivalence (1)« (2) and the other equivalences are derived from
Griffin’s theorems.

Coroiiury. The following are equivaleni conditions on a ring A.

(1) A is FPF.

(2) A is an I-ring with injective Q.(A).

Corollary. A maximal order A of a self-injective ring Q is an FPF conch ring.

We pieviously remarked that a maximal order A of a ring Q is a conch subring,
hence irtegrally closed in Q, so 4 is FPF by the corollary.

Coroliary. A semiprime ring R is FPF iff R is an I-ring.

For using Eggert’s result, R has injective Q.(R).

9. Continuous rings

A ring R is said to be right continuous ([20}, [21]) if the following two conditions
are satisfied:
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(C1) If I is a right ideal of R, then there is a maximal essentia! extension of / in
R generated by an idempotent.

(C2) If f=f%€R, and if I=fR, then I is generated by an idempotent.

Right continuous rings get their name by upper continuity property of the lattice
of principal right ideais [21] (expounded in [10a], p. 160 ff.). A ring R is continuous
if it is right and left continuous. An integral domain R not a field is an example of
a ring satisfying (C1) but not (C2).

We now cite some theorems on continuous rings of Utumi (but see [10a], Chapter
13), and deduce some corollaries for integrally closed rings.

Utumi Theorems ([20,21]). 1. A right self-injective ring R is right continuous.

2. If R is right continuous, then R/J is right continuous, and von Neumann
regular, and J, the right singular ideal, coincides with the Jacobson radical.

3. A regular ring R is right continuous iff R contains all idempotents of its maxi-
mal right quotient ring Qu.x(R).

Corollary. If Q is a self-injective regular ring generated by its idempotents, then Q
has no integrally closed regular subrings #Q.

Corollary. If R is a commutative regular ring integrally closed in )= Q,.(R),
then R is a continuous ring.

Let R denote a commutative regular ring. Then R is self-injective iff R is com-
plete (= the lattice of principal ideals is complete). Thus, Q = Q. (R) is complete.

If R is a Boolean ring, then R is a regular ring #Q = Q.. (R) whenever R is rot
complete. Then R cannot be integrally closed in Q since every element of Q is an
idempotent. Similarly, R caniot be continuous.

A theorem of Goodearl [10b] characterizes regular rings which are generated by
their idempotents.

Theorem. A regular ring R is generated by its idempotents iff no division ring

except possibly Z/pZ is a homomorphic image of R.

Corollary. If a commutative regular ring R is generated by idempotents, then the
only residue fields of R are finite prime fields.

10. Conch rings as maximal subrings

If A conches x in Q, then A is a maximal subring of Q iff Q=A[x]. If Q is a field,
this happens if and only if A4 is a rank 1 valuation ring. In this section we discuss
this situation.

If A conches x in Q, then A conches x in Q, = Afx], and hence A is also a valua-
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tion ring of Q,. Moreover, as stated, 4 is a maximal subring of Q,. Since Q, is
generated by 4 and units, then Q.(4)=Q.(Q,) by Section 5.

The largest ideal H,=Hg,(A) of Q; in A is Ae=[],,,%x "4. (Clearly A, C H,,
and if ge H,, then gx"€ A Vn, so ge A,.) We set O, =0,/H,, A3=A/H, etc.

Theorem. If A conches x in Q, = A[x], then any subring of W of K, = Q.(Q>) that
conches x' in K, and that contains A is a rank-1 valuation domain (equivalently
x’~"W=0) and WNQ;=As.

First WNQ, conches x’ in Q,. Since A4 also conches x’ in Q;, then WNQ; = A5.
Next, by Krull’s Theorem, W is a chain domain, that is, a classical valuation

domain of a field. Since
K—0D(WY=0(A
£ YZc\*" ) ¥c\?

we have
Nx'"A5=0=[x"""W

Il
e

Since W conches x’,

M=max W=Vx"'w

and if P, is any prime ideal #M, then
p, = Wix] =K,

proving that P,=0. Thus, W is rank-1.

Henceforth, to siinplify notation, we shall assume that A is a maximal subring
of Q=Al[x]. Then, H,=H, Q,=Q’, Ay=A’, etc. The rest of the section is devoted
to the question: when is W of the theorem, which we call the associated rank
1-valuation domain of A, a discrete valuation ring? We prove that if it is, then W
is a ‘radical’ extension of the local ring Ay, where a ring R is a radical extension
of a subring § in case for each x € R there corresponds an integer n>0 such that
x"eS. If there is an integer #>0 so that x"€ S for all xe R, then we say that R is
an n-radical (or n-ical) extension of S. (Compare {7].)

Theorem. Let A be an x-conch maximal subring of Q, and suppose there exists an
associated discrete valuation ring W of A. Theh W is an n-radical extension of the
local ring Ap of A’ at P, where P=Vx"'A, and

M=max W=VYx'""'W, and M"=x""'W.

11. Kaplansky’s theorem on radical extensions revisited againl

Using a theorem of Kaplansky [13] on radical extensions of fields, we conclude

It was revisited in [7].
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that if W/M#Q.(A/P’), then W/M has characteristic p>0 and either
(KAP 1) W/M is purely inseparable over Q.(A4'/P’), or else
(KAP 2) W/M is an algebraic extension of a finite field.

Consequently, we have the:

Corollary. If A is a conch maximal subring of Q such that A/P has quotient field
of characteristic 0, then there is at most one associated discrete valuation ring of
A, namely

W=Ap

the local ring of A’ at P'.

This follows from the theorem since necessarily W/M=Q.(A/P"), so if
S=A'\P’, then W/M=(A'/P’')S™! and so

W=A'S"'=Ap.

Corollary. If A is an x-conch maximal subring of Q, then there is at most one
associated discrete valuation ring W having max W=x""'W, namely, Ap.

For, by the theorem, W is n-radical over Ap and n=1.

12. Local FPF rings are valuation rings

Recall that a waist of a ring R is an ideal W such that every ideai of R ei:her
contains or is contained in W.

Local FPF Ring Theorem ([5]). A ring R is a local FPF ring iff R has injective
Q= Q.(R) and the set of zero divisors of R is a waist W such that R/W is a chain
ring.

A ring R is a sandwich ring if R contains the radical J=J(Q) of Q= Q.(R).
Sandwich Ring Theorem ([5],[6]). (1) Any local FPF ring K is a sandwich ring.

(2) If R is a sandwich ring, then R is FPF if and only if Q= Q.(R) is injective and
R/J is FPF.

Note. The proof of the theorem involves showing that Q.(R) = Q, where Q=0Q,J,
and R=R/J. Since @ is injective by Utumi’s theorem (Section 9) when Q is, then
R will be FPF iff (FPF 2) holds for R.

We next remark how the sufficiency of the Local FPF Ring Theorem follows
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from (2) of the Sandwich Ring Theorem: if 7 is any finitely generated faithful ideal
of R, then (via injectivity of Q), I contains a regular element, so /D W. Then using
the chain ring property of R/W, one sees that /=yR+ W for some y€ R, hence
I=yR=R, so (FPF 2) holds in R.

We may now deduce:

Theorem. Any local FPF ring R is a valuation ring for Q.(R).

The proof is alimost immediate frcm the Local FPF Ring Theorem: by injectivity
of Q, J consists of zero divisors. Since R is a sandwich ring, W=J. It follows that
(R, J) is a max pair of Q (inasmuch as (R, J) is one for Q), so R is a valuation ring.

13. Local valuation rings are sandwich rings

A local valuation ring A is a valuation ring that is a local ring.
A sandwich subring A of Q is a subring containing the radical J=rad Q of Q.

Local Valuation Ring Theorem. Any local valuation ring A of Q is a sandwich
subring.

Any valuation ring A has the property that ge A or ¢~ € A for any g€ U(Q), so
the next lemma suffices for the proof.

Sandwich Subring Lemma. Let A be a local subring containing q or q~' for every
unit q of Q. Then A is a sandwich subring.

Let jeJ\ A and let ji, € J be such that (1+)~'=(1+jp). Since g=1+j€ U(Q)\ 4,
q '=1+j,eA. Since g=(1+jy) ' ¢ A, jo¢ max A, hence j; '€ A. Thus J contains
a unit, a contradiction. This proves that J¢ A.

Corollary. If A is a local valuation ring for Q, and if all of the prime ideals of Q
containing J are maximal, then Q'=Q/H is a field, and A’ is a chain domain for Q'.

The corollary follows from the theorem in as much as JC A4 and this implies that
H, the largest ideal of Q contained in 4, contains J, so A is a maximal ideal. Now
if A is any valuation ring for Q, then A’ is one for Q’. However, by the first theorem

of Section 5, Q.(A")=Q’, and everv valuation ring of a field is a chain domain by
the classical theorem (Section 2).

Partial Converse of Local Valuation Ring Theorem. If A is a valuation sandwich
subring for Q, and if Q'=Q/H is a field, then A is a local ring.

For, since A’=A/H is a valuation ring for Q’, 4’is a chain domain by the classical
theorem stated in Section 2.
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Let M2 H be the ideal of A such that
M'=M/H=max A’

Then, if aeA\M, then a¢J, so b=a'eQ. Since A’ is a chain domain,
b'=(a’)"'e A’, hence be A, proving that A4 is a local ring with max 4 =M.

Corollary. If A is a valuation sandwich subring for a local ring Q, then A is a local
ring.

For then Q//J is a field, so J=H and Q'=A/J. We can sharpen the above results
for a conch subring.

Local Conch Ring Theorem. Let A conch x in Q. Then A is a local ring with
max 4 =Vx"'A iff Q is a local ring and A is a sandwich subring.

First assume that A is local, that P=max A4 =}x"'A4 and let ge Q\ A. Then we
can write

x=dgt g+ +q,q"
for a;e A, i=0,...,n, and n=1. Then

X=dp+qo
where

qo=alq+...+anq"=qb and b=a1+---+a,,q"~l,
SO

1

1=x'ay+x'q, and c=x"!'gy=1-x"'gyeA.

Since x 'ape P=}x"'A, c¢ P=max A4, hence ¢~ '€ A. Since gy=xc, go=qb is a
unit of Q and g5’ =x"'c7, 50 q is a unit of Q.

We next show that any ae A\ H, where H = H(A), is a unit of Q. Since g=ar¢ A
for some t€ Q, g whence a is a unit, as required. This proves that H is a maximal
ideal of Q consisting of the non-units of Q, so Q is local. Since H=rad Q, A is a
sandwich subring.

Conversely, if Q is a local ring and JC A, then 4" is a chain ring for
Q.(4")=Q’". Suppose M2J is the ideal of A such that M’'=max 4'=}x""'A",
Clearly, M=Vx'A since x"'42J. If aec A\M, then a” '€ Q, so ac A* Now if
a¢ U(A), then we can write as before

x=ay+ayg+ - +a,q"

! and then

forg=a"
xa"=aqya"+---+a,€A,

so ae M=)x"'A. This contradiction proves that A is local with mas A =yx'A.
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The local part of the converse follows from the last corollary also since any conch
subring is a valuation subring (Section 6).

14. Almost maximal valuation rings
In Section 1 we remarked:
Theorem. Every chain ring A is a valuation ring for Q =Q.(A).

Although this follows from the regular total order property and Griffin’s
Theorem in Section 7 we can prove this directly: 4 and P=max A define a max pair
in Q, since if (B,L)2 (A, P) and if b=ac '€ B\L, where ae A, ce A*, then a¢ P,
so a'eA, whence b '=a'ceA. Then ceP, unless beA. But then
¢ '=ba'eB, hence 1=c"'ce BPC L, a contradiction. Thus, B\ L C A, and so
BC A, that is, B=A, whence (B,L)=(A, P) is a max pair.

We say that a chain ring R is a maximal valuation ring if every system x=x;
(mod I;) of congruences is solvable for x in R provided that it is finitely solvable
for x in the sense that every finite subset of congruences is solvable.

A chain ring R is an almost maximal valuation ring (AMVR) provided that R//
is a maximal valuation ring? (MVR) for every ideal /#0.

AMVR’s were first introduced by I. Kaplansky [13b] who prove that they had the
property (FGC) that finitely generated modules are direct sums of cyclic inodules.
Much later D.T. Gill [25] generalized this:

Theorem (Kaplansky, Gill et al.). A local ring R is an AMVR iff R is an FGC ring.

Another characterization:

Matlis’ Theorem ([27]). A chain domain R is an AMVR iff Q.(R)/R is injective.

And yet another:

Gill’s Theorem ([25]). A local ring R is an AMVR iff the injective huli E(R/max R)
is a uniserial (or chain) module.

The Kaplansky-Gill et al. and Gill Theorems are contained in [4], p. 134,
Theorem 20.49.

W. Brandal, T. Shores, R.&.S. Wiegand and P. Vamos completed the structure
theory for FGC rings, and this is fully described in Brandal’s Lecture Notes [23].

2 The term is justified in [28]: a MVD is a valuation ring for a maximally complete field: If v is a
valuation of a field K, then the valuation ring P, is maximal iff every extension of v to an overfield
enlarges either the value group or the residue field ([28],[29]; also compare [30], [31]}.
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However, Vamos’ characterization [29] is particularly suited for our purposes, so
we shall describe it.

A ring R is fractional self-injective (FSI) iff every factor ring R/I has injective
quotient ring Q.(R/I). In [5] I conjectured that a ring R is FSI iff every factor ring
R/I is FPF. These latter are called CFPF rings, and I proved the conjecture in [6].

Vamos' Theorem ([26]). A ring R is FGC iff R is I'SI and Bezout (= finitely
generated ideals are principal).

Theorem ([6]). R is FGC iff R is CFPF.

Corollary ([6]). A local ring R is CFPF iff R is an AMVR.

15. Spiit null extensions as valuation rings

In [24a,b] we studied when the split null extension R =(B, E) of a bim:..dule E
over ring B is (F)PF, or a chain ring, or when R had relatedproperties (e.g. self-
injective). For example, Proposition SA of [24a] states that R is a right chain ring
iff B is a right chain ring and E is a uniserial right B-module such that bE=E for
every 0 beB. If Bis commutative and E is faithful, then B must be a domain for
this. If, further, E is torsionfree, then £ must be injective (Corollaries 5B and 5C).

Theorem 6 of [24a] characterizes when R= (R, E) is a PF chain ring for com-
mutative B. This happens iff B is an AMVR domain such that B=EndgE and £
is the injective hull of B/max B. (See [24a] for other characterizations.) Henceforth,
assume that E is faithful over B.

For commutative B, in [24b] we proved that R = (B, E) is FPF iff E is injective
over B, Endg E is the quotient ring BS~! of B with respect to the multipli~ative set
S consisting of all e B with zero annihilators in E, and every finitely ger.erated
ideal which is faithful on E is invertible in BS~!. It is much easier to characterize
when R=(B,E) is a valuation ring for Q.(R)=(BS L, ES™ ')

Theorem. Split-null extension R = (B, E) is a vaiuation ring for Q.(T)=(BS ', ES™!)
iff E=Es for every s€S, and B is a valuation ring for BS™!, assuming that E is
Saithful.

Corollary. If E is torsion free over B, this happens iff E is divisible and B is a valua-
tion ring for Q= Q.(B).

Corollary. If E is a torsionfree module over a domain B, then R = (B, E) is a valua-
tion ring for Q.(R) iff E is injective and B is a chain domain.
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Appendix A

We give a sketch of the proof of the Conch Ring Theorem. For a domain 4, we
already have indicated that any conch subring A4 of a field X is a chain domain. The
statement that A conches x in K is simply that A[x] is the unique minimal subring
of K (properly) containing 4. In view of the 1-1 correspondence M~ A, between
prime ideals M of A and over-rings of A, it follows that P=rad 4 contains a largest
ideal P,# P. Then, using the fact that A conches x, we can easily show that Vx4
is a prime ideal, whence P=}x"'A (since x™! ¢ P,).

Conversely, if a chain domain A has radical P= Vx"A, then one can show that
P,= ﬂnzl x""4 is a prime ideal, and the largest prime ideal contained in P, hence
Alx]=Ap, is the intersection of all subrings of K properly containing A. Thus, A4
conches x.

The proof for the general case of a valuation ring A hinges on the fact that a pair
(A, P) is a max pair of Q iff (4, P’) is a max pair of Q’. Furthermore, then A con-
ches x in Q iff A’ conches x"in Q’. Then, P=Vm iff P’=Vx""'A’, etc.

Appendix B

The Conch Intersection Theorem for rings with few zero divisors

The proof of the second theorem in Section 8 also suffices to prove:

Theorem. If R has few zero divisors, then the Conch Intersection Theorem holds

Jor Q=Q.(R).

This follows since if S is a subring of Q properly containing R, then for every
z€ S\ R there corresponds u € R so that w=z+ u € Q*. Thus, w is a unit of Q lying
in S but not in R, sc the theorem follows.

The theorem is a sharpening of Griffin’s theorem in Section 7 since a conch sub-
ring is a valuation ring for Q, and it also provides an alternative proof.

Converse to the Local FPF Theorem

We note a converse to the local FPF Theorem of Section 12.

Theorem. If A is a local valuation ring for Q.(A), and if Q.(A) is self-injective,
then A is FPF,

By using the equivalence P, ¢ P, in G.4 of Section 7, we see that 4 is an I-ring
inasmuch as A = Ay, is integrally closed, where M is the unique maximal ideal, so
A is FPF by the second corollary in Section 8.

Local valuation rings of chain rings are chain rings
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Every known valuation ring of a chain ring is a chain ring. The next theorem
characterizes this property.

Theorem. For a valuation ring A of a chzin ring Q the following are equivalent:
(1) A is a local ring.
(2) A is a sandwich subring of Q.
(3) A is a chain ring.

Proof. (1)=(2) by the Local Valuation Ring Theorem in Section 13, and (2)=(1)
by the Partial Converse in the same section. Moreover, (3)=(1) is trivial. Next
assume (1), equivalently (2). If a,be A, then aQ c bQ or bQ CaQ. Suppose that
aQ ¢ bQ, and write a=bg for some ge Q. If g¢ A, then g¢J, hence g 'eQ, so
g 'eA. Then b=aq™", hence bA CaA. On the other hand, if ge A, then a4 C bA,
hence A is chained.

Problems

(1) Does the FPF Conch Intersection Theorem hold for an arbitrary self-injective
ring Q? If J is the Jacobson radical of Q, then O=0Q/J is a self-injective von
Neumann regular ring, so the FPF Conch Intersection Theorem does hold for Q.
It easily follows that R +J is the intersection of FPF conch subrings of Q if R is
integrally closed in Q. If, for example, J is nil, then integral closure of R implies
that R 2 J so R is integrally closed in Q. and hence R is an FPF conch intersection
in this case. Does this hold in general?

(2) Is a conch subring on valuation ring A of s ring Q necessarily an order in
Q.(Q)? The answer is ‘‘yes” if Q is generated over A by units, hence if Q is a local
ring, or when Q is regular.

(3) If A and B both conch x in Q, how are they related? For example, suppose
Q is a field, and A and B are maximal x-conch subrings. If A is an equi-
characteristic complete discrete valuation ring, then we know that A = A/P(t), the
power series ring over A/P. If B is also a complete DVR, then A= B iff A/P=
B/P. A dubious conjecture: A =B in general.

(4) Which continuous regular rings are integrally closed in their maximal quotient
rings?

(5) What are the relative weak global dimensions of conch subrings of rings?

(6) We propose to study conch subrings of non-commutative rings. All of the
foregoing theorems on conch rings, except for the case Q is a field, were obtained
ring-theoretically, that is, without employing valuation theory. It seems likely that
such is the case here, and that ring theory can make a contribution to the structure
of intractable rings, e.g. the enveloping algebra of a Lie algebra is an Ore domain,
but little else is known about its structure. J. Towber has suggested (orally) that
conch rings may be useful here.
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(a) A special case occurs when A4 conches an element x in Q, where x belongs to
the center C of Q. If Q is a skew-field, then ANC is a chain ring; if Q is a regular
ring, then ANC is a semihereditary ring. When Q is regular and self-injective, then
ANC is FPF.

These may be useful for the structure of 4.

When Q is a skew-field, I conjecture that A is a chain ring.
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